ODonnell Consulting

Portfolio Detail

Design & Analysis


Stress, Vibration and Fatigue Analysis of Bellows

stress analysis of bellows

We were requested by a client to perform a stress, vibration and fatigue analysis on a bellows design. The 28-convolution bellows was intended to last for 5 years, or 13.14 billion cycles. The bellows assembly is installed in a vertical orientation with its bottom end stationary. The bellows top end is subjected to a load that causes its top end to move in a circular motion. Both bellows ends remain parallel at a constant distance apart at all times.

The resulting motion from the load placed upon this assembly causes the top end to circle around the bellows axis at a radius of 5 mm with a speed of 6,000 rpm. Furthermore, OCEI was to evaluate the natural frequencies of the bellows for comparison with the assembly operating (exciting) frequency.

Finite element modeling and analysis were used for stress and fatigue evaluations. ANSYS was used to construct the models and perform the analyses. All geometry and operating data were provided by the client. A three-dimensional model of the entire bellows, including all 28 convolutions and both ends was constructed. 3-D solid elements were used to simulate the bellows.

The material properties were obtained from the ASME Code Section II, Part D. The finite element analyses included two different types of analysis; 1) structural/fatigue analyses, 2) modal analyses.

The structural/fatigue analysis involved performing a stress analysis to determine the stress distributions during a typical rotation cycle. The image above shows a close-up view of the radial stress (X-Dir).

See also:
Failure Analysis of Ruptured Refinery Bellows
Finite Element Analysis of a Vessel Processing Nuclear Waste
Finite Element Analysis & ASME Code Section VIII Division 2 Calculations on Feedwater Heaters
Finite Element Analysis
Vibration Analysis
Publications – Heat Exchangers, Pressure Vessels, Welds and Other Applications, Fatigue, Elevated Temperature


Business Email Address*We only accept business email addresses.