Failure Analysis – Cracked Pressure Swing Absorber (PSA) Vessels

Inspection, Evaluation and Repair Program Developed after Numerous Cracks Discovered

Failure Analysis Performed on Numerous Pressure Swing Absorber (PSA) Vessels – which were Found to Contain about 1300 Chevron Cracks.

A leak was found in the nozzle weld of a pressure swing absorber (PSA) vessel at a hydrogen plant. The leak was in a SA 350 LF2 carbon steel forged outlet nozzle at the vessel bottom head. A full penetration butt weld joined the nozzle to the SA 516 Grade 70 carbon steel head 2.4 inches thick. The materials of construction and design were entirely appropriate for the intended service.

In order to assure that other PSA vessels could safely continue to be used, a major inspection, evaluation, and repair program was developed. The vessel materials were evaluated to the detailed requirements of the ASME Boiler and Pressure Vessel Code, Section VIII, Div. 1 & 2, British Code 5500, and technical literature on hydrogen induced cracking (HIC) and inspection technologies.

SA 516 Grade 70 steel is commonly used in safety related welded pressure vessels because of its mechanical properties including strength, ductility and toughness. SA 350 LF2 forgings are normalized and have high toughness at low temperature. The Submerged Arc Welds were made using an electrode/flux combination with high notch toughness and low hydrogen. SMAW repairs were made with low hydrogen E7018 electrodes. Rejectable radiographic indications in the Submerged Arc Welded (SAW) groove weld had been gouged out and repaired by Shielded Metal Arc Welding (SMAW) using an E7018 electrode.

The investigation included shear wave ultrasonic examination of welds in 95 PSA vessels. About 1300 hydrogen-induced chevron cracks were found in the deposited weld metal of 78 PSA vessels. The vessels were evaluated for Fitness-for-Service, taken out of service, repaired or continued in service with periodic inspection, depending on the results of the API-579 Fitness for Service fracture mechanics evaluation.

Extensive analysis of the cracking was conducted, including UT, RT, and Magnetic Particle (MP) examinations. A joint test protocol was also developed for destructive testing on boat samples, chemical composition analyses, metallographic evaluations, and fractographic analyses. Numerous light micrographs and scanning secondary-electron and back-scattered electron images (SEI and BSEI) of good quality were obtained at various magnifications. These images and photographs were quite definitive in identifying the root cause of the cracks. Additionally, similar cracks were found in vessels which had seen no service.

Multiple microcracks exhibiting a staircase pattern unique to hydrogen-induced chevron cracks were found. These transverse weld cracks were inclined at 45 degrees to the weld surface in the direction of welding or against the direction of welding. The secondary cracking and multiple quasi-cleavage features connected by ductile shear fractures were also characteristic of hydrogen-induced chevron cracks.

A Pressure Swing Adsorption (PSA) vessel separates a target gas species from a mixture of unwanted gases under pressure. The vessel contains adsorbent materials which preferentially adsorbs the target gas species at high pressure. Once the adsorbent material is saturated, the vessel undergoes a depressurization process to desorb the unwanted gases, allowing the target gas to flow through. PSA vessels are crucial for achieving high purity levels of gases and are used in various applications, including the recovery of hydrogen and the separation of oxygen and nitrogen from air.

 


 We Perform Failure Analysis Services – Investigating Designs, Materials and Weld Failures on Equipment including PSA Vessels.

(412) 835-5007

Scroll to Top